PROBLEMS OF OPTIMIZING MULTILAYERED
SPHERICAL VESSELS

Yu. V. Nemirovskii and M. L. Kheinloo UDC 539.3

The problem of calculating a composite construction possessing defined optimal properties
when compared with other constructions of the given type is considered in this paper in the
case of spherical vessels in the domain of elastic strains.

1. Let a spherical vessel constitute a set of N concentric spheres connected with one another (Fig. 1)
and made from materials which in the general case are different. The vessel is loaded by uniform internal
and external pressures and is under the conditions of stationary heating.

We introduce the dimensionless quantities

b=/,  rmi=p/l,  Ti=T9|T,,
Bi=B8T, E;i=E’/p, oo, =G,/ P,
S=0:"Ip Vi, Gi=a;/l, 0Ny =0/
hi=hl,  pi=p"lp uw=u’/l,
6* =6*/p, Py = Plo\r+1 Ip

where p, Tx, ! are the characteristic pressure, temperature, and linear dimension; 43 and T{ are functions
of the stress and temperature in the i-th (i=1, 2, 3,..., N sphere El, vi, B§ are Young's modulus, Poisson's
ratio, and the coefficient of linear expansion in the 1—th sphere, 0°p. ,09 a‘zpl, u§ are the stress and displace~
ment components in the i-th sphere; a{ and h{ are the inside radius and thickness of the i-th sphere; p§ is

the reactive pressure on the inner surface of the i-th sphere; b and PN +i are the outside radius and the out-
side pressure for the composite spherical vessel; pj @i=pj=aj+,) is the current radius within the limits
of the i-th sphere; and o{ ° is the limiting stress in the i-th sphere.

We shall assume in the general case that Young's moduli vary with temperature according to some
law E{=Ej(T{). Then for a certain sphere with the number i (Fig. 1) (the numeratlon begins from the inner
cavity) we obtain the equation [1, 2]

L . L

(a prime denotes a derivative with respect to the dimensionless coordinate rj); the general solution of this
equation has the form

3

‘Pi—":-z c]'i\pﬁ! 631":1 (t=1,2,...,N)

j=t

Here 4 and P, are the particular solutions of the homogeneous equation, while ¥si is the particular
solution of the nonhomogeneous equation.
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If the material of all spheres is incompressible, then for any relation-
ship E{ = E; (T3} we have

P =" Py =Ty j‘ gidri,  gi=r1"tE;

a1 =- 4Biry jgi (jfidri) dri,  fi=Tir?

If the material of the spheres is compressible and Young's modulus
does not depend on temperature, then

Yu=riy Pu=r% Pu=—23Er{ —v)? S Tiridr;

and in the absence of a temperature field

Pu=T7y Py =17 gy =0 (1.1)

The stresses ory, 0, and the displacements uj are determined in terms
of the stress functions i by means of the expressions

3 3

Ory = D eirih Oe, = 271 ) 5 (b + i) (1.2)

j=1 i=1

3
wp =B D Asien + BTy Ajio= 270 (1 — 3v) giri ™ -+ (1 — vi) i’

=1
where the constants of integration c;i and ¢, are determined from the boundary conditions
6 ()= —DPi,  Gry {(Ani) = — Pvm
and are equal to
oy = (— 1)1 (Dj + Bji) Dy
Dy = 1y (04) i (i) — Vs (%4) Yia (%)

Dy; = 0Py (iy1) — %14 iy Vi (&) )
Bji = P33 {0) i (Firg) — Vo (Kin) $ri (@), 7=1,2, na=]

In a number of cases it is expedientto design multilayered vessels which are strengthened by fairly
thin spherical shells made from high-strength materials. If a layer with the number i corresponds to such
a shell, then in (1.2) we must put

6r; =0, o, =0y = o (P — Pisy) (2h3)™! (1.3)
Uy = o2 (P — Piv) (1 — v) CQER)™ + BT (o)

Indeed, using the Lagrange theorem ([3], page 128) and the condition hj « ¢4 (and, in fact, i~ aj+4,
¥ii (@) ~¥ji (ai+y), ¥ji' (o) = Pji'(aj+ 1)), we have

D; = [thg; (083) $ui” (3) — bas” () i (043)] Fg
Dy = ayPp; () (i — Pivg)y 2=1,2, n=kj
By = [y (o) $s’ () — b (0t) Prg (03)] 24
Substituting these expressions into (1.2}, we obtain the expressions (1.3). Using the joining conditions

U () = Uk Gkar)  (B=1,2,0.., N 1)

we obtain the system of equations for the determination of the reactive forces pj (i=2,3, ..., N):
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A1xPk + Piar + BokPraa = My, (1.4)

where

dyp = HypSy™, o= Hy Sy, My = RSy ' (1.5)
Hyy = oy [Ags Oxer) $are (er) — Aai (Or4) 1 @) Diosr
Hay = arg [Ayear Onen) Pakar Or) — Aggas e Pryien @)l Dyt
Ry = DLy (1) — Ly (%41) Dia
Ly (r) = By Ay (ry) — BoxAgy (ry) + DyfAsk () + BeT'x (rn) DyEy
Sk == tgag {Disr [Aar Q) Pur (@) [ — Agre (O41) o 05)] + 7Dy [Agern @ar) Yr,e1 (Oka) —

— A ar Oierg) Yo,k (“k;uz)l}» ne = ExEits

The general solution of the system (1.4) is obtained by the Cramer method [4]

Py = BpA7r (k=4,2,... ,N—1) (1.8)
where
1 dyy 0 0 ... 0 0
d12 1 dgz O “ e 0 O
A=|0 dy 1 dy 0 0
0O 0 o0 o ding 1

while Ay is obtained by replacing the k-th column by the column of the right side of the system (1.4).
We denote

Ji=1, J=1— d1td2;t—1ft——11 (1.7)
t=23,...,N—1)

Since Ji = 0 [for A=JJ, ... IN-g # 0, since the system (1.4) must have a unique solution], we obtain
the following solution of the system (1.4), using the Gauss method [4]:

Po= K J17t — Kadyy (J1J )+ Ksdyyday (J1 051 — oL (— AW Kyea@yg . o Ao TSl s - - Tyt

Ps = KoJ 3 — Koy (JoJ5) ™ + Kodpadyy (Jo 5Ty — . (= DKy dondss . . . don—s (Jo)s B Iyt (1.8)
Py = KnoJ I?rl—z - KN—1dz,N-'z (In-1IN-g) !
v =Ky I3t
Ky=M,—dyp,, Ky=M,—dy[M, —dypjJ*
Ky =M; — Myd,3Jy + diadys (M — dyp} (JoJ )

..................................

‘ Ky =My, — dz,N—1pN+1 - MN—zdl,N-lJ;’l—z e
+ (=¥ vdi e - Byadys (M — dyupi) (In-oIns . - . Tl o)t

These relationships are convenient since they give explicit expressions of the reactive pressure in
terms of the parameters of the composite vessel, external load,and temperature.

2. The general analytical expressions obtained in Section 1 for the determination of the reactive pres-
sures and stress and displacement distributions inthe case of an arbitrary assembly of a composite sphere
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allows us to formulate and solve a number of problems concerned with optimization of multilayered spheri-
cal vessels.

The first fundamental optimization problem is: find such a construction of a composite spherical
vessel for which, under given loading (including a temperature field) in all spheres or in some of them, a
certain limiting state is fulfilled. For example, at certain points the condition of yield or ultimate strength
is satisfied. I an internal thin~walled shell is included in the assembled construction, then loss of stability
is possible for a certain critical stress.

The second fundamental optimization problem is: find such a construction of a multilayered spherical
vessel that the absolute displacements on the inner or outer surfaces are a minimum.

In addition, in certain constructions it is possible to satisfy both requirements at the same time (the
mixed optimization problem).

We introduce the function yi(ri) which under the Tresca or Mises plasticity conditions has the form

\ ‘
fi (ri) = G0, — 67, = 2-1 2 c5i [W3i” (rs) — s (ra) ri7]

j=1

To solve the first optimization problem we must first of all find [£i(ry)|= [fi(r})| in the region o=
Ti= oj+4. Further,the following cases are possible:

1) in spheres with certain indices q the yield conditions are fulfilled at the radii ra; the rest of the
spheres remain elastic;

2) the inside sphere does not lose stability [5];
~3) all spheres remain elastic;
4) the inside sphere loses stability.

The conditions

el =0 2.1)
ol <a®, rmisFrd (i=12...,M (2.2)
p.—p < p* p*¥= 2B hy?o, -2 {3 (1 — v )] (2.3)
correspond to the cases 1) and 2).
The inequality (2.2) for all rj and
p» — p, = p* 2.4

correspond to the cases 3) and 4).

Equations (2.1), {2.4) and the inequality (2.2), which should be regarded as constraints on the param-
eters i, Eq, vi, 0f, P PN+1 with :

0oy <<, . . <Ny

correspond to the cases 1) and 4).
In (2.1)-(2.4) the pressures pj are calculated according to the expressions (1.8).
We note that in the absence of a temperature field
fi(r) = 3 (ps — Pigy) 0 d2 (@ — o)y
and max l f.,; (ri) l = I _f.,', (di) ' for ol; < r; < A1

Consedquently, in this case in (2.1), (2.2) we must take r} = oq- In the second fundamental optimization
problem we can find the minimum of [u |or [uy| with respect to the parameters «i, vi, Ei, Py, PN+ under
the conditions
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0o, <oy . <L ONny
i) <oi*, Pa— P <DP* (=1,2,..., )

The solution of this problem on the basis of the general expression (1.2) is carried out by a standard
method ([3], page 318), Therefore, further details in this direction are omitted here.

The solution of the systems of nonlinear algebraic equations (2.1) for the parameters being varied
can be sought by means of the successive approximations of Newton [6]. Here the problem concerned with
the choice of the first approximation must be considered in each particular case separately, in conformity
with the choice of the parameters to be varied. For example, when varying the quantity @, in the role of
the first approximation we must take oj= oy +(j—1) (ozN+1—a1)N'1. /

In a number of cases the specific features of the design of the required composite vessel allows us to
simplify, to some degree, the expressions (1.5), (2.1)~(2.4). Let, for example, in a certain part of a multi-
layered spherical vessel, thin shells and thick spheres be alternating.

We denote these shells by the indices t, while the spheres alternating with them are denoted by the
indices s. Then, using the natural assumptions

ht<hs - (2 '5)

(hy and hg denote respectively the thicknesses of the shells and spheres) and stipulating that the conditions
of plasticity be fulfilled in certain shells with the indices q (g assumes all or a part of the numbers corre-
sponding to the indices t), instead of Eqs. (2.1) we, for example, obtain

|0t (Pg — Pg+1) (2Rg) 7| = 60* (2.6)

where the solution of this system of equations must satisfy the inequalities (2.2) for i=»q. In addition, on
the basis of (2.5) and the Lagrange theorem on a mean value ([3], page 128) the coefficients (1.5) for k=t
and k = s respectively assume the form

dy=— 04 0R)" dyy= —%h (1 0h)1 2.7)
s = — Rehgy (L + Bhsa) ™, dyg = — (1 + B,5554,)1
M= N (L 4 08)7 M, =Nhe (14 0h,.,)"
0; = neD¢* [Ap e (0) Vr,t01 (Gr0) — Agyerr (1) P 01 (Fe)] &7
e¢ = Diy [Ase (0) Pue () — Ay (o) Bie ()]
%y = 1D Folpg [Ag 1 (000) Wy, ten (000) — Ay, paq (04) Py ()] (o0i80)
Ny = L* {0ty [ g0 (00) Wya (00) — Aze (00) Yo (2)] Dip}t (2.8)

es = D;J:I [A2s (‘xs+2) ‘pls (a's) - Als (as+2) 11’2& (st)] gs—l
&5 = D1y [Ag,er1 (Or0) Vrosr srs) — Ayysrr (%si0) Vo501 (Ast2)]
Ry == Obg [ Apg (heug) Wis (srz) — A (Fere) s (Fssa)] D;:-1 (chsra€s)™"
Ns = Ly® {054,D R [ Az o1 (ss2) Pryeq (Kssa) — Asry (%sr0) Yo 501 Gosa)]}
Bs* = gt () Yot (1) — P’ (@) Pne @), 7 =1,2, j=n
Dy = gy @) hrs" (00r) — ar’ (o) 4 (2)
Bj i1 = g ta1 (012) Byt (sa) — Vs, t01 (Rr) Yo &)y B =1,2, j=n
Dy = Paytra (%) V041 Oeag) — Pa,e Ohern) Py0n ()

L; = D*n, [BITt+1A1,t+1 (o) — B;Tt+1A2,t+1 (o) + D:1A3,t+1 (@) - Bees Ty (04) X
X DisB ] — Dy [By* Ay () — Bar* Aae () + Dy* Age (@) + BT (o) D*E,
B = Wy (0ts) Vs (hs10) — Pas (Xosa) Pos (@), 7 =1,2, jkn

o Dso = ¢2S (OCS) ‘pls (as+2) - 1st (d's+2) 'q’ls (‘xs)
Bjsi = P ﬂ(:xs+2) Brot1 (Fora) — 3, 341 (tra) Prgir(Fsra)y  2=1,2, j+n
Dssy = P00y (Fssa) ‘P;,s+2 (ots40) — W;,sﬂ (%sra) Prov1 (Xse0)
LS = Don, [B:S+1A1,s+1 (dtgrg) — B;TS+1A2,3+1 (2ss0) + D::1A8,5+1 (ots42) +
+ BoaTs (tusa) DiEna] = Disy [ By Ayy (1) — Bas® Ay, (dors) +
+ DAy (otg42) + BT (aSTZ) DySE)
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In these expressions primes dencte a derivative with re-

spect to the argument indicated in brackets attached to the func-
- tion; o4 and ag are the inside radii of the shells and spheres,
\11\\\\ where it is assumed that oy = ot+y, as+1= @s+3.
NS
\t\\\{ = On the basis of (1.7}, (2.5}, and (2.7) for multilayered spher-
\\\ ‘ \\:\\\\\ ical vessels with alternating shells it is natural to take
~
\ttx\”f .~ \ii\tf{
NN N Jo=1, Ji=1—d;d, .
N o | A ' iuatrs 2.9)
~\\\\::\5, Here we must bear in mind that dy; =0, i.e., J; =1,
NENE
b k}az In certain cases Egs. (2.9) allow us to obtain analytical
expressions for optimal thickness of the shells.
H AN A > #19? s T We consider, for example, the case where the composite
7 biv;\\[,\A,A,AJ vessel with alternating shells is loaded only by the external
7 pressure (M; =M, =...= My-; = p; = 0). Substitufing in this case
Fig. 2 the expressions (1.8) into (2.6), where the absolute-value signs

are replaced by the multiplier kq = +1 (plus is taken for tension,
minus is taken for compression), with (2.7) and (2.9) taken into account we obtain a system of equations
from which by subsequent computations we find

hN = e (2kNdN*)—1 — 91_\(1_1 .at g = N
by = "q°;+2°°4;kq+2 (042044100 k) — 032 — 0
hy = wiog*onks (00, %ask,)™ — 0,7 Tat g=1

(2.10)

Here the quantities 8¢, "t, 0g, g are obtained from (2.8) when substituting Egs. (1.1), while the index
q corresponds to shells in which Eqgs. (2.6) are fulfilled.

The expressions (2.10) give the optimal thicknesses of the shells with the indices q of any composite
spherical vessel, in the portion of it where shells alternate with spheres, the vessel being loaded only by
external pressure.

Since all hq, 8s, #s, 6t, nt must be positive according to their meaning, we must take kq =—1 in (2.10).
Consequently, all shells of an optimal composite construction simultaneously reach the yield points in com-
pression. The solution (2.10) thus obtained must satisfy the inequalities {(2.2)for i# q. These inequalities
can always be satisfied at the expense of the choice of the remaining parameters py, py+1, Ei» vi, oi‘ (for

i=q).

3. In the role of an example we consider the problem of a three-layered spherical vessel of the shell-
sphere-shell type, loaded by an internal pressure p; and an external pressure p;. In this case N=3;t=1, 3;
§=2;4=1, 2, 3. The inequalities (2.2) and (2.3) determine the region of elastic stress states, while pre-
serving the stability of the inside shell. The boundaries of this region are determined by Eqs. (2.1) and
(2.4). For the parameter values

Ey=40000, E;=3000, Es—14000, v =0.3
vz =0,25, vy =103, 61* == 100, &t =1 (301)
pa=10.0, o3* = 20, p=|a*°], l=25

the regions of elastic states are found inside the five~cornered figures Ay By CyDiEx shown in Fig. 2.

At the same time the values k=1, 2, 3 correspond to the indices hy =0, 0.005, 0.01. The solid five-
cornered figures correspond to the parameter o; =0.2; the dashed figures correspond to the parameter oy =
0.6. The curves AxBk and CkDg are obtained from Eq. (2.1) for g =2, and they correspond to the reaching
of the yield points on the inside diameter of the sphere, for tension and compression respectively. The
curves BiCk are determined from Eq. (2.4), and they correspond to the loss of stability of the inside sphere.
The curves DkEf are determined from Eq. (2.1) for g =1, and they correspond to the reaching of the yield
point on the inside diameter of the inner shell under the conditions of compression, When calculating these
curves, no assumpitons were used for the shells. A calculation according to the expressions (2.6) (for q =
1, 3), simplified on the basis of the assumptions (2.5), points to a sufficient reliability of these expressions
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for finding the curves AxBk, BgCk, CkDk within the whole range of the computed values of h; and hg; for the
curves DkEk this applies for hy < 7- 1073, The corresponding curves are located fairly close to the curves
AkByg, BCk, CkDxk, DgEk in Fig. 2 with a maximum deviation of 15% and are not presented because of their
cumbersomeness.

We note that in Fig. 2 the points By, Cy,and Di correspond to optimal designs, with the points By, Ck
corresponding to the yield point in the sphere and the loss of stability of inner shell being reached simul-
taneously. The points Dy correspond to the yield points being reached simultaneously in the sphere and the
inner shell. For the parameter values (3.1) the yield point in the outer shell can be reached only after the
yield points in the sphere and (or) the inner shell or after the loss of stability of the inner shell,

The use of graphs like those depicted in Fig. 2, although giving fairly clear information about the state
of a composite construction, turns out to be inconvenient for finding optimal parameters of the construction
with a large number of elements. In this case it is more convenient to use directly Egs. (2.1)-(2.4) or the
simplified Eq, (2.6). In Figs. 3 and 4 at p=p,, =D, for the parameter values

wy=0.3, vy = 0.25, vy = 0.3, p; = 0, 1, = %95, ny = Yy, @, = 0.2

we have presented the graphs of the relationship between —of (n=1, 2, 3) and h;, calculated according to
the expressions (2.1) (solid lines) and (2.6) (dashed lines). The curves ABk and CkDik (k= 1, 2, 3, 4, 5) are
calculated respectively for hy=0.01 and 0.001. As is seen from these curves, the use of the assumptions

(2.5) is completely justified.

The graphs represented in Figs. 3 and 4 allow us to determine the approximate values of the optimal
parameters of a composite spherical vessel. Thus, for example, for

= 0.2, 1y = Wy, ny =3y, L= b, —ag* = 0.27, —6,* = 16.2,—0s* = 2.70, pe° = 185 kg/¢m’

from the graphs (solid lines) in Figs. 3 and 4 we see that the feasible values of the optimal parameters
must be located in a region which is a common part of the regions

hy & 107 (80,82}, hy =107 (25, 31], hye=107[1,10]
ha 1073 [1,101,  hy & 100[1, 10, Ay 1078 (1, 10]

i.e.,
hy & 107 [80, 821, hy = 107 [4, 10]

Assuming that the curves ApBy, when hg varies uniformly, are transformed uniformly into the curves
CkDg, we obtain

hy =~ 0.0081, hy = 0.0050 (3.2)

for the case considered.
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For these values the plasticity conditions are satisfied simultaneously on the inside diameter of the
sphere and in the outer shell. With the aid of (2.2), (2.3) it is easy to see that the inner shell remains elas-
tic and does not lose stability.

We note that the values (3.2) can be used in the role of the first approximation to improve the values
of hy and h, according to Newton's method with use of Eqgs. (2.1), when the thickness of the shells is not too
small.

Concluding,we make the following observation. To show that the method of calculation presented is
true also in the case where the inner shell loses stability, in (2.3) for the sake of simplicity we used the
expression of critical load of the individual shell,

In reality, when the stability loss of the inner shell is accompanied by deformation of the layers to
which it is joined, the critical load can be different. The corresponding problem can be solved, and the re-
sulting value must be used for the improvement in (2.3). However, this problem will be considered sepa-
rately. '
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